Numerical Solution of Nonlinear Differential Equations with Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas
نویسندگان
چکیده
In this paper we investigate the behavior of numerical ODE methods for the solution of systems of differential equations coupled with algebraic constraints. Systems of this form arise frequently in the modelling of problems from physics and engineering; we study some particular examples from electrical networks, fluid dynamics and constrained mechanical systems. We show that backward differentiation formulas converge with the expected order of accuracy for these systems.
منابع مشابه
On the adjoint formulation of design sensitivity analysis of multibody dynamics cs
Numerical methods for design sensitivity analysis of multibody dynamics are presented. An analysis of the index-3 adjoint differential-algebraic equations is conducted and stability of the integration of the adjoint differential-algebraic equations in the backward direction is proven. Stabilized index-1 formulations are presented and convergence of backward differentiation formulas is shown for...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملBackward Differentiation Approximations of Nonlinear Differential/Algebraic Systems
Finite difference approximations of dynamical systems modelled by nonlinear, semiexplicit, differential/algebraic equations are analyzed. Convergence for the backward differentiation method is proved for index two and index three problems when the numerical initial values obey certain constraints. The appropriate asymptotic convergence rates and the leading error terms are determined.
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملA hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کامل